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The steady flow of a viscous incompressible fluid past a body of finite dimen- 
sions is considered. It is assumed that the velocity vector u satisfies condition 

II - Lb= = 0 (R”O) 

where u, is the velocity vector of the oncoming stream, R is the distance 
from a fixed point of the body, and a > l/s.. Terms defining the asymptotic beha- 
vior of velocity of the order of 0 (R-l) and 0 (R-*‘*) are determined and an esti- 

mate of the residual term is given. The derived asymptotic formula for the velo- 
city vortex shows that outside the wake the vortex decreases according to an ex- 

ponential law. 

1, Lemmrr, 1.1. Let us consider the steady flow of a viscous incompressible 
fluid past a body such that B c R3 . We denote the dimensionless velocity vector and 
pressure by u and p ,respectively, Let S = dB be a surface which satisfies the Liapunov 
conditions. We locate the coordinate origin inside B and select the direction of coor- 
dinate axes and the scale so that the oncoming stream velocity u_, is (1, 0, 0) and the 
diameter B is unity. 

The steady motion of a viscous fluid is defined by the system of equations 

u*vu i_ grad p = Au i 2h, div u = 0 (1.1) 
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where 21 denotes the Reynolds number. Let us define boundary conditions at the body 

bY 
22 Is = uo 

where function ua is subject to condition 

s u,.nda = 0 
s 

(1.2) 

(1.3) 

in which n is the unit vector of the inward normal to surface S and do is the Lebesgue 
measure on s. At infinity the condition 

must also be satisfied. 
]iml,i- u(z) = U, (1.4) 

The existence of solution of the problem defined by (1.1). (1.2) and (1.4). when con- 

dition (1.3) is satisfied, was first proved in fl, 21, then in [3, 41, in [5] and in [6]. In 
papers [ 1, 21 the condition (1.4) is satisfied in some general sense and, if the fluid is at 
rest at infinity, also in the classical sense. All authors of the above cited works had estab- 
lished the existence of soiution in the class of solutions containing the finite Dirichlet 

integral 
$)Vu12da:< oo 
G 

(1.5) 

where G = R3 \ B. Finn had shown fl] that (1.4) can be satisfied in any solution 
of flow subjected to condition (X.5), and Faddeev had proved this for the class of gene- 

ralized solutions derided by Ladyzhenskaia. 

The problem of asymptotic behavior of solutions at some distance from the body is of 
fundamental interest, if only in relation to the boundary layer theory. A refinement of 

formula (1.4). at least with respect to the order of magnitude of the decrease of u (z)- 
u,, proved to be unsuccessful up to the present. 

The series of detailed investigations by Finn and his collaborators of the asymptotics 
of this solution, made on the assumption that 

U (2) - Urn = 0 (I$=) (1.6) 

is possibly related to this aspect. Finn established that for a > l/s the asymptotics of 

the velocity vector is defined by 

zz (Cc) = Urn + H (z) *a + 0 (f”j-s’x+s) (1.7) 

where a is the vector of force exerted by the stream on the body, H (s) is theGreen’s 

matrix of the Oseen system, and 6 is an arbitrarily small positive number. The asymp- 

totics of derivatives du / dxk is obtained by formal differentiation of formula (1.7) 
which trivially yields formula (1.5). 

It was shown in a recent paper by Babenko ( *) that formula (1.6)in which a can be 
made arbitrarily close to unity is satisfied for any solution of the problem of flow with 
a finite Dirichlet integral. The asymptotic formula (1.7) and its refinements are, con- 
sequently, valid for solutions with a finite Dirichlet integral. 

A refinement of formula (1.7) is presented here and the rate of vorticity decrease at 

*) K. I. Babenko, “On stationary solutions of the problem of viscous incompressible fluid 
flow past a body”, preprint by the Institute of Applied Mathemati~, AN SSSR. Deposited 
W4815-72. 
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some distance from the body is investigated. Almost all results obtained here were indi- 

cated in the preprint of a paper by the authors (* ) . The results of independent investi- 

gations of vorticity decrease appear in f8] An estimate of vorticity decrease, when a 
certain one-sided inequality is satisfied, was obtained in [9]. It should be noted that the 

method developed in [lo] for estimating the vorticity decrease is equally suitable for 
investigations of plane and three-dimensional flows. This method is used below 

1 . 2. Let us set u = ZJ + uoo and consider the system of Oseen’s equations 

AV -22h-&-22hgradp=O, divu=O 

The fundamental solution of this system is of the form 

H*j(~-_y)=&A@-~, 
j 

i, j = 1,2, 3 

where 

2~qt(~-y)=-+3A@-22h$3, i = 1, 2, 3. 
1 1 

As 

cP=~(s)=-&~(1-e-t)~ 

s=Iz-Yy(-zr+Y1,” x = (Zl, xaL”ar X8), Y = (YIP Ys, Yd 

It can be shown that the estimates 

I 
&- Hij (Lz - y) 1 <c [f 5 - y p’a (s + 1)-l-~iS + 

!“, - y J-l-’ (s + q-11 

fl.8) 

where I = 0,1 are valid for the fundamental solution. It can be readily verified that 

I 
&H+~(z - y)i < C 12 -_Y I-‘(’ f 1j-l 

U.9) 

I qi (z - y) I G C I 2 - Y I-” 

We point out that the letter C , whether with or without a subscript denotes here vari- 

ous constants which depend only on h. 
1. 3, Let us denote by $’ the vector whose coordinates are 

Finn IJ] has shown that, when (1.5) is satisfied, v (z) can be represented by Green’s 
formula v(z)=&&>+ 5 H@--Y)F(Y)& (1.10) 

G 

where H is a matrix with elements H;j, and I,(X) is a vector whose components are 

* ) K. I. Babenko and M. M, Vasil’ev, “The asvmntotic behavior of solutions of the ob- 
lem of viscous fluid flow past a finite b~y’;preprint by the Institute of Applied Ma p” he- 
matics, AN SSSR. Deposited Np4590-72. 
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Denoting the volume integral in (1.10) by Id (z) , after integration by parts, for the com- 
ponents ofvector Id we obtain 3 ^ __ 

"c j, z=l “yj 

combine the surface integral in formula (1.12) with the integral (1. ll), and denote the 

result by JOk. Thus 
u b> = Jo (d + Jd (2) (1.13) 

2. Derivation of pCinCipP1 term8 of arymptoticr. 2.1. Thederi- 
vation of principal terms of the asymptotics is based on the evaluation of integrals 
(1.13). To do this we introduce certain lemmas. Let us consider the convolution 

and assume that 

I(z) = s w(x-Y)f(Y)dY (2.1) 
R' 

1 f (4 1 < (1 x I + 1)-P (s + iby, I WC4 I < I4-” (s + I>-’ 

where p, y, 6 and E are nonnegative constants and e > 1. Let us estimate 1 (z) 

for large 1 5 I. 

We set 1 x ) = R, 8 I II: I = R,, where 8 = const and 0 < 8 < IId. Let 

Do = {Y: 1 ~1 I < R,, ~22 + 933 s R,;) 

D, = {y: I y1 - ~1 < R,, (~3 - ~2)~ + (~3 - ~3)~ < Ro21 

On these assumptions D, fl D, = #. kt us set D = R3\ D, U D,. In conformity 
with the subdivision of R3 we represent 1 (z) as the sum of three integrals taken over 

regions D,,, D, and D and denote these by II, I, and 1,. respectively. If the parts 
played by functions f and W are interchanged, then, by the substitution of Y for x - Y, 
integral I, reduces to integral 1, . It is, however, more convenient fo consider I, sepa- 

rately, since function W must satisfy the condition 

soever are imposed on y . 
Let us estimate integral 1,. It can be shown that 

c-l++C, 

E > 1, while no conditions what- 

VYED 

We verify that 
1s (Y) + 11 1s (5 - y) + 11 > s (5) + 1 

Hence, setting w,, = min [y, E, max (y, 8) - 1 -_],where Ihl<l (h= 
con&), we obtain 

l~3(4l<‘CWf 1P ,vJp-p-6 b(Y) + IPhdy 

If h, = max (- h, 0) is chosen such that fi + 6 > 2 + ho, then 

s IyI+ [s(y) + l]-l-hdy = 2 

I1II>& 
CR;-P-“+hO&,, h 

sin cpdq 
< 

[p (1- cos Q) + ql+h 
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Here and subsequently we use the notation 

& = i9 if a#b 
1 log R, if U= b 

It follows from the last estimates that 

1 I, (2) I< CR2-P-6+h0 [s(z) + i]*h A,,, h 

2.2. Let us consider the integra1 1s (z) for fh = min (y, e .- i 
We have 

II,(s)l~Cls(3)+il-~h151-P s IYI-8w+v-h~~ 
IIIKRO 

(2.2) 

h)- 

for 6 ( 2 + h, the estimate of the last integral is 

1 Ia(2) I< CR2-P-s+h” [s (z) ;t l]-ph A,,. h (2.3) 

2.3. Let us estimate integral I, (z). Let r = v zaa + zsa. We subdivaide 

D,, into three regions 

In conformity with this subdivision we represent 1, (2) as the sum of three integrals 

11 (4 = 111 (4 + 11, (4 + 11s (4 (2.4) ’ 

where I,,, I,, and 1,s are integrals taken over regions di, d, and d, ,respectively. 
Let us consider the case of r > 1/ R, and assume that x1 > 2R,. Then 

1 w (z - Y) 1 & CR-S [s (5 - Y”) + iI-‘, vY= Do 

where y” = (0, ~a, ys). Setting R_ 

‘PO (Yz, Y3) = _s, If(Yl9 Y27 Y3)ldYl 
0 

we obtain 
CR1-6 AL. maxdr I 'PO bh Y3) 1 

It can be ascertained that 

[,g(z - y”) + I]-’ ,( C ( Yaa lr; yaa + I)-: Vy E ds 

and, consequently. 

(3.5) 

cos cp, p sin cp) dq 
0 

Since on these assumptions r > I/r/s R (s + 1), hence, by 
r/R (s + I), we obtain 

setting R, = 0 / (4 v/zi 
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(2.6) 

As regards I,, (x), it is obvious that 

II,I@) 16 CR-’ [s (4 + l]-’ ‘f’ pe, (p) dp 
0 

(2.7) 

It was previously assumed that xr > 2R,. If x1 < 2R,, then, retaining estimates 

(2.6) and (2.7), we can show that 

111 (4 f < J,, f4 -t Jis (4 (2.8) 
where J,, (x) and Jr3 (x) are the right-hand sides of inequalities (2.7) and (2.6). 

respectively. It can be shown that the inequality (2.8) is, also, valid for r- ( fx 

2.4. Let us estimate ‘pl (p) and derive the inequalities for 1 llj 1, where j = 

1, 2, 3. 
Propsition 1. Let p -I- y < 3. If p > 1 -/- y, then 

% (P) S C (P f IF-@-y Ar,p_Y 

if, however fl < 1 + y, then for @ > 1 

Simple evaluations of the integral 9% (p) prove this proposition, 

Using Proposition 1, we can reduce inequalities (2.5) - (2.7) for p > 1 + y to the 
form 

For1<~<~-t 

(2.9) 

(2.10) 

(2.11) 

1 Ilz (x) 1 < CRZ+-" (s -/- l)-’ Al,, (2.12) 

1 I,, (ix) 1 < CRz-@s (s + 1)1-y-, (2.13) 

1 I,, (2) 1 < CRZ-+s 11 + fs + 1>“-’ &I (s + i>-’ (2.14) 

Summarizing estimates (2.2), (2.3) and (2.9) - (2.14), we come to the following propo- 
sition. 

Proposition 2. Let 2 - p + h, ( 6 < 2 + h, and p + y <3. Then for 

B>l+Y 

/I(x)1 & C {R'-'(s + I)E-LfA,, p_y + AZ, P+y]+R2-B-s+ho(~ + I)-'hAO, h) 

and for /3<1 4-r 

I I(4 1 4CR2-B-8(I(~+1)-‘+(~ + l)-Yf Al,y'+ RftO(s + l)-'nAo,frA2.6) 
where zh = min (wh, cl,). 

2.5. Let us determine the principal term of the velocity asymptotics. On the 



On the asymptotic behavior of a steady flow of viscous fluid 657 

basis of formula (1.8) we have the following estimate for the surface integral JO (z) : 

i JO (4 ) < CR-I (s + 1)-l 

Assuming that estimate (1.6) is valid for a > ‘/a and setting 6 = E = 3/a , we apply 
to the volume integral Jd Proposition 2. Taking into consideration that p = 2~. > 1 

and y = ” we Obtain 1 Jd @) 1 < CR-” (s + 1)-@-‘/z) 

If a < 1, these estimates yield 

(2.15) 

( 2, (x) ) < CR-” (s + l)-(“+) 

which is a refinement of estimate (1.6). Note that the nonlinear terms in the integral 
Jd have been eliminated here. This was possible because condition a > ‘/a ensures 
the definite “smallness” of 21. 

A further application to Jd of Proposition 2 on the assumption that p = 2a, y = 
2a - 1 ‘I h (h is a reasonably small positive number) yields 

1 2, (2) - J, (z) 1 ,( CR-al (s + I)-“1 

a, = 2a - (1 + a,/2, xI=2a-1+-t/2 

Repetition of this reasoning yields an estimate similar to (2.15) but with exponents 

Cl2 = 2a,+, ?+2u,-If; 

Thus, after a finite number of steps, we obtain 

1 u (r) 1 < CR-l 

The application of Proposition 2 yields the estimate 

1 v (x) - J, (z) 1 < CR-l (s + 1) -‘in 

and after a further application of this proposition, we obtain 

1 v (cc) - J, (x) I & CR+-h)/2 (s + I)-(132 

From this follows 
1 2, (z) I < CR-’ (s + l)-l+h 

Setting 8 = 2 and y = 2 - 2h and applying again Proposition 2, we finally obtain 

1 Jd (x) I < CR-“:1 (s + I)-” log R (2.16) 

-2.6. Let us determine the asymptotics of the surface integral J, (~1. Expanding 

HkZ @ - 9)~ dHk, b - y> / +/j and qk (Z - y) into series in powers of y and 
taking into account that for large R 

I 

aaHkZ (x-?/I 

aY<aYj I 
< CR-2 (s + I)+ 

we obtain 

J,,(s) = ilorHkr (2) f i bjr’v + 0 [Rm2 (S + 1)-l], k = 1, 2, 3 
j, I=1 j 

where al and brj are certain constants. Individual terms in formula (2.17) are formally 
arranged so that terms which decrease inside the wake (*) (see footnote on page 658) 
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as R-Q are related to principal terms. In order to retain the symmetry of formulas no 
rearrangement has been carried out. We set 

u1,(4 = i: Hkl(4al 
I=1 

and 

u (Lx) = 211 (x) + WQ (x) (2.16) 

It follows from (2.16) and (2.17) that 

1 ,?a 1 < CR-“/z (s + 1)-1/, log R 

Hence the decrease of w’ia which can be considered to be the error of the asymptotic 
formula, is of the order of ‘ia, which is reflected in its symbol. 

3. Derivrtlon of further term, of rBymptotic8. 3.1. Let us estab- 
lish certain lemmas. First, let us consider integral (2. l), assuming, in addition to the 

assumptions made in Sect. 2, that function W (x) is continuously differentiable for.z # 
0 and that 

I I 
‘2 < CR-‘-l (s + I)-” 

(3.1) 
k =2,3 

We shall further assume that the estimate of f (z) contains a logarithmic multiplier, i. e. 

1 f b) 1 ,( CR+ (s + I)-’ logDo R 

and that p > 2 and 3 < p + y < 4. Owing to the presence of the multiplier 
logpo R in this formula, the estimates of integrals I,, I,, I,a and 1is will, obviously, 
contain this multiplier. 

Let us determine the asymptotics of 1 (CC) on the assumption that r > d?r. We con- 

sider integral I,, (2). Using (3.1). we obtain 

Let us evaluate the right-hand side of this inequality. It can be shown that 

~If(~)I~~ld~SCR~-~log~~~Aa,li-r (P<T+~) 

s If(Y)IIYIIdYsCRE~“(s+ l)E+‘b (P >2 fT) 
dt 

It can be shown with the use of Proposition 1 that for p > 1 + y 

If(y) I (IY, I + 1~3 l)dy< CR'+" (s + 1?+"' ld” f&, p-y Ad, p+y 

*) Region {Z : x1 > 0, xz2 + 9~3~ G q} is assumed here to define the wake. 
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which implies that 

III@) - W (4 j f (Y) 4.1 
I 
S CR”-’ (a + I>-’ x 

[R”-’ + R’-“’ (s + i)‘] log’“R 

In the derivation of the final formula we take into account that for g > 1 + y 

Hence 

I,, (x) - W (x) j,f (x) dx < CR”-’ (s + l)-’ [R”‘-’ + (3.2) 

R’-“’ (s + l)E] logP”R 

The validity of inequality (3.2) for r 6 I/x can be readily proved. 
Proposition 3. Let p > 2,3 < p + y 4 4 and B > 1 4- y. Then 

I 
I(x) - W (x) 1 f (x) dz < CRS’z-S [RI”-’ (s + 1)-’ + (3.3) 

R* 

RE-” (s + i)‘-‘1 1 og’“RA,, p-yA4,p+y + CR=-@-’ log’“R (s + 1)-“Ao, I& 

Proof. The estimate of integrals I, and I, , obtained above, is, evidently, valid in 

this case. For zr > 2R, integral II was subdivided into three parts, and it was found 

that estimates (2.9). (2.10),(2.12) and (2.13) together with (3.2) yield (3.3). For x1 < 
2R,,we subdivide II into two components, viz. I, = Jr, + J,, in conformity with the 
subdivision of region D into g, and g, = D \ g,, where 

gl = Y : I YI I < Ro, ya2 + ysa d 

Formula (3.2) and inequality (2.6) are then valid for J,, and J,, , respectively, and, 

consequently, inequalities (2.10) and (2.13) are also valid. This proves that inequality 
(3.3) is valid in this case. 

3.2. Let us determine subsequent terms of velocity asymptotics. We denote 

Jd (x) by Jd (x; II, v), thus stressing that Ja is a quadratic functional of v. Using 
expansion (2.18), we obtain 

Jd (5; n, V) = J,j (z; ?I1, V’) + Jd (2; zl’, W”) + J,j (5, W’j*, 2”) + 

Jd (2; W’ig, W”) 

The asymptotics of the last three terms in this formula can be determined on the basis 
of Proposition 3. Since the principal terms of that asymptotics are of the same form as 
the terms of order R-Q in formula (2.17). hence only the constants bj, are different in 
the asymptotic formula for n (x) . We denote these new constants by ajl. Hence only 

the last term needs be evaluated. Using Proposition 3 and setting 0 = a/2, Y = s/a 
and PO = 1, we find that in this case the residual term is 0 [Re2 (s + 1)-l log 3R]. 
Thus, setting 
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k=l,2,3 (3.4) 
. 

we obtain 

t’k. (2) = @) (Z) + Vka;g (5) + 0 [f?-2 (s +’ 1)-5 log3 R] (3.5) 

Note that here integrals Jdk (5; ,vl, ~1) are related to terms of order-R-‘/z. The deter- 
mination of asymptotics of these integrals is rather cumbersome. However for a2 = 

us = 0 it is readily done with the use of Proposition 2. 
In fact, for k # 1 

1 Hkl (2) 1 6 C [R-2 + R-‘;* (s + I)-‘] 
and, consequently, for a2 = us = 0 

1 vkl (5) 1 < C IR-2 + R-“(2 (s + I)-‘1, k =29 3 

We note that, with inequality (1.9) taken into account, Jdk is the sum of integrals to 

which either Proposition 2 (and then 6 = 2) or 3 is applicable. Hence in this case 

(3.6) 

According to one of the results obtained in [ll] (a,, u2, us) is the vector of the force 
exerted by the fluid on the body. If u2= ua = 0, then the total force reduces to head 
drag. It can be shown t6at coefficients ajl are expressed in terms of the resultant mo- 
ment of forces exerted by the fluid on the body. 

3.3. Let us determine the principal terms of the asymptotics of the velocity 
vector derivatives. These are obtained by formal differentiation of expression (2.18). 

Let t = (ti, r,, ts) be an arbitrarily small vector. It is obvious that 

v (CL + 1) - v (x) = v1 (x + t) - v1 (4 + Jd (x + t) - Jd (z) + 
0 [I t / R-2 (s + 1)-l] 

The remainder Jd (x + t) - Jd (x) can be estimated with the use of Proposition 2. 
We have 

Jc&-i-t)-Ja&) = \ 
~u--;~~l j, [=I 

Applying Proposition 2 to the second integral and, since 

I hiI b - Y, 4 I s c 1 t 1 5 - y I-” b- + 1r2 

hence, by setting p = y = PO = 2, we find that the considered integral is 

0 [I t I R-Z (s + 1)-l log4 R]. For the first integral we have the inequality 
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Thus 

We differentiate expression (1.13). noting that Jd (z) can be differentiated according 
to the rules of differentiation of integrals with a weak singularity [ 121. Thus 

aJdk (X) -= 
8Xi 

i, l=l 

where the volume integral is singular. Note that hoposition 2 is applicable to the inte- 

P ’ *Hkz s- axiayj vjvdy, G,=i\ {y:jy--lIl} 
n 

Furthermore 
3 

aaHkl tx - Y) 
’ aXialJj uj (~1 VI (Y> dy = 
s 

a2fficl (? - Y) 

lu=xl<l 
aXiayj x 

3 

[Vi (Y> VZ (Y> - Vj (5) VI (211 dy -I- 2 Vj (2) Vz (5) X 
i, I=1 

s aah @ - Y) 
aXiayj dY 

IV--rl,<l 

By virtue of (3.7) the first term is 0 

i)-l]. Thus 
[R-s/a (s + 1)-l] and the second 0 [Be2 (S + 

av au1 
zq=azj -I - 0 [R-2 (s + 1)-l log4 R] (3.8) 

4. Asymptotlcc of the velocity vortex, 4.1. It is possible by starting 
from formula (3.8) to determine the principal terms of asymptotics of o = rot U. An 
elementary calculation yields 

o=-&Vsxa 
e-AS 

T+O[R-2(~+1)-110g4R] (4.1) 

A refinement of the last term of this formula is presented below. Let us set 

Then 

e-AS (x-lo 

Ho@ -Y> = /+n,x_y, (4.2) 

3 

(vjmi - vimj)$ Ho(~ - Y>dY + Qi(S) (4.3) 
i 

& 1 Ho (Z - ZJ) $ (vjoi - ViWj) njd6 
j=l 

Using formula (4.3). we derive the estimate of function cp (x) = I 01 (4 I + 
1 co2 (2) 1 + I w3 (5) 1 for large R. Formula (3.5) implies that 

I v (LX) 1 & CR-l (s + I)-’ 

since I v’/* (x) 1 < C,R-l (s + 1)-l. The last inequality follows from Proposition 2 
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for fi = y = 2, and h is a small negative number. After some transformations we 
obtain 

Q. (x) = R-Q exp [-IS (~$1 W (z) + R+l 

Let us determine the asymptotics of integrals Szi inside the wake. Expanding Ha (z - 

y) into series in powers of y, we obtain 

Qi(X) = -$(A+ iBij3) + 0 ( R-2e-hs) 

A comparison of these expressions with (4.1) yields Ai 
follows that 

5 1 Qi (5) I< AR-s’Ws 
i=l 

where p is any number smaller than h.Consequently 

cp (x) & A 
s 

’ (‘I ? @ - ‘) dy + A 
G 

I Y I [s (Y) + 11 

Q (5) = R-” e-y 

4.2. It follows from (4.1) that 

I 0 (4 I G 

+ R-“) 

= 0, i = 1, 2, 3,from which 

(4.4) 

C,R+ (s + i)-l (4.5) 

Let us show that using inequality (4.4) the estimate (4.5) can be substantially refined , 
and that an exponential decrease of vorticity outside the wake can be obtained. The 
method developed in [lo] in the course of analysis ofthe plane problem is also suitable in 
the case of three-dimensional space. This method is applied below. 

Let us set p = 2ur + pLz, u1 > 0 and uz > 0, and assume that the inequality 

cp (Y) f Go@ ]pis (Y) + W' r (1 + 1) I Y I-"', V Y E G (4.6) 
. . 

is satisfied for I = 1,2,..., n. We shall show that this inequality is also valid for 1= n + 1. 
Let us estimate the product $ (Y) exp [--~LS (G - Y)], using this assumption and setting 

P (YI = I y P cp (Y). We expand G into the sum of nonintersecting regions Gk, k = 0, 
1 ,...) n. Setting a (2) = r, we define these regions as follows: 

.s,Y,<++&))“G, k=l,2 ,..., n--l 

G,,= 
2n-1 

Y:~T <S(Y) nG 

It can be shown that s (x) - s (y) < s (Z - y). Hence for y E Gk 

exp I- vs @ -Y)] < ew [- 

from which, using the obvious inequality 

tm 
r(m+l) -ce’* Vt>O, m>O 
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and the inductive assumption (4.6). for k = O,l,... n - 1 we obtain V y E Gk 

Q(Y) exp I- PS (z - Y)] d C exp [-- pas (z - Y)] eB’-‘r (k + 1) x 

I'@-k+I)jw(++ ~)+*~k[Pl'j*-_X)+i]kn 

It can be shown that 

Using this inequality and the known inequalities 

we obtain 

Thus 
$ (y) exp [- ps (1: - Y)] d exp [- pas (r - y) 1 COB*’ X 

If y E G,, then 
3 (y) exp [- Ps (z - y)] < CoeB*l (fz:ii! 

The last two inequalities imply that 

ne& % 
cp (4 d c 2 1 1 ABn-l r (n + *ia) 

tw+ ljn s I Y I--“* [s (Y) + q-’ x 
G 

Qn (z) = RA~*e-tLSS(X) (1 + R-‘/a) 

Using Proposition 3, we obtain 

Let us select B so that 

Then 

cp (4 d y- 
r tn + 2) R-‘~~ 

bl~ (4 + 11 
?a+1 

+ Ad’ (n + 2) R% 

tlw(4 + $1 
la+1 

It can be assumed that Ae < l/agn, hence 

B*r (n + 2) 
‘D cd < co [p1s (2) + i]n+l 

R_.,, 

(4.7) 

It follows from (4.5) that the inequality (4.6) is satisfied for n = 1, hence it is satisfied 
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for all n and, consequently, 

from which 

‘p (2) < Cl R-“’ exp (4.8) 

4.3. Let us show that 
‘P (2) < Che -(A-h)@)~-‘ll, 

where h is an arbitrarily small magnitude. 

Let us consider the set M of such u > 0 for which 

sup zR3% (z) exp [p.s WI < w (4.9) 

As previously proved, M is not an empty set. It is evident that, when PO E M, then 
LO, PLO] c M. Hence M is either the interval [O, ml or the half-open interval [0, na). 
Let us assume that m < h, and take ml < m, such that the remainder m - m, is fairly 

small. We set cp,,(r)=(p(~) em,@@. By definition 

‘PO (x) < Cc&i2 [s (z) + 11-l (4.10) 
From inequality (4.4) we obtain 

(4.11) 

p1 = p - ml, Q1 (2) = R-‘/a e~ls(x) (1 + R-*:2) 

Note that, since the difference between P and k is as small as desired, p - ml > 0. 

Let US apply the results derived in Sect. 4.2 to function ‘p,, (z). From inequality (4.11) 
follows that 

‘po (2) < CR-?‘2exp 
[ 

- 9 s (x) 1 [S (cc) + i]',' (4.12) 

where Ps = l/s pr can be assumed, and constant B is defined by inequalities (4.9) and 
independent of constant Co appearing in inequality (4.10). Hence, if m, is made reason- 

ably close to m, we obtain ml + pa / B > m. Consequently, it follows from (4.12) that 
(4.9) is satisfied for p < ml + Pa / B, which is absurd. This proves that .m = h and, 
consequently, 

I co (2) 1 < C&’ exp [- (h - h) (R - xl)] (4.13) 

4.4. Formula (4.1) can be readily refined. This is achieved in a manner simi- 

lar to the proof of Proposition 2 and 3. Using inequality (4.13) after simple computa- 
tions, we obtain 

w=&vsx 
,-As 

a H + 0 [ R-‘+(h-h) s W] 
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ON THE COMPLETENESS OF A SYSTEM OF ELEMENTARY SOLUTIONS 
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The problem of completeness of a system of elementary solutions in the space 
of biharmonic functions with finite energy is investigated. The problem arises 
during the study of infinite systems of linear algebraic equations in the asymp- 
totic theory of plates. Actually a more general theory is developed here, includ- 
ing e. g. orthotropic and transversely inhomogeneous plates. The problem of ex- 
istence of elementary solutions is solved at the same time. The results concern- 

ing the completeness obtained here are independent of the form of the boundary 
conditions at the end and can, consequently, be applied to a fairly wide class of 
elliptic boundary value problems which, in particular, appear in the theory of 
thick plates. 

Before the problems of completeness are discussed, we study the problem of 
traces for the solution of a certain elliptic equation in a semi-cylinder. The 
necessary and sufficient conditions are formulated for the boundary valueswhich 


